

regret

[image: PyPI version] [https://pypi.org/project/regret/] [image: Supported Python versions] [https://pypi.org/project/regret/] [image: Build status] [https://github.com/Julian/regret/actions?query=workflow%3ACI] [image: Codecov Code coverage] [https://codecov.io/gh/Julian/regret] [image: ReadTheDocs status] [https://regret.readthedocs.io/en/stable/]

regret is a library for deprecating functionality in Python
libraries and applications.

Its documentation lives on Read the Docs [https://regret.readthedocs.io/en/stable/].

Deprecations

regret can deprecate:

	
	[x] callables
	
	[x] functions

	
	[x] classes
	
	[] subclassable classes

	
	[] attributes
	
	[] of modules

	[] of classes (& methods)

	[] of instances

	
	[] descriptors
	
	[] classmethod

	
	[] modules
	
	[] current module

	[] other module

	
	[] parameters to callables
	
	[x] previously required parameters that will be removed

	[x] optional parameters that are now required

	[] deprecated values for parameters

	[] type changes for parameters

	[] mutual exclusion

	
	[] interfaces
	
	[] PEP 544 protocols

	[] zope.interfaces

	[x] inheritability of a class

Design Goals

regret is meant to cover all of the deprecations an author may encounter.

It is intended to:

	be versioning system agnostic (i.e. SemVer [https://semver.org/], CalVer [https://calver.org/], HipsTer [https://en.wikipedia.org/wiki/Hipster_(contemporary_subculture)],
etc.), because deprecations originate from a version, a point in
time, or both.

	be documentation system aware (i.e. Sphinx [https://www.sphinx-doc.org], epydoc [https://en.wikipedia.org/wiki/Epydoc], Plaintext [https://www.google.com/search?q=use+sphinx], etc.), because
deprecations need communication.

	be itself fully tested, because deprecations must not break the
code they deprecate

	support removal date indication, and likely “policies” which
automate choosing default removal dates, because deprecations
ultimately intend some ultimate change

	make “clean code” trivially easy to deprecate, and make complex
code possible to deprecate, because the deprecation process is
fraught with edge cases and unforeseen necessity.

	minimize the amount of deprecation-related code required for
authors, since deprecations are boring, and we all want to focus on
developing our libraries instead.

In particular, as a lofty first milestone, it is intended to cover all
of the specific deprecations required for these jsonschema issues [https://github.com/Julian/jsonschema/issues?utf8=%E2%9C%93&q=label%3A%22Pending+Deprecation%22],
and with luck, to subsume all the functionality present in
twisted.python.deprecate [https://docs.twistedmatrix.com/en/stable/api/twisted.python.deprecate.html].

Contents

	Before You Deprecate
	Have a Policy

	Document Your Public API

	Empathize

	Analytics

	What You Can Deprecate and How
	Functions & Callables

	Parameters

	Subclassability

	regret’s Deprecation Policy
	Public API

	Versioning

	Backwards Incompatible Changes

	Python Version Support

	Further Notes

	API Reference
	regret

Before You Deprecate

Regret is painful.

Making a design or implementation mistake and having to pay for it later can be a significant burden [1] for a library, package or codebase.
This burden weighs heavily both on maintainer(s) and on users of the code.

Most of the functionality provided by regret is aimed towards these inevitable moments after a mistake has been made and is to be corrected.

However, there are a number of things that can be done before any mistake has even been made, which may minimize the need for some deprecations, or minimize their damage, or increase the overall trust between you the maintainer and your package’s users.

This document discusses a number of these concerns – things you should do as a maintainer before you even do any deprecations at all.

[1]
a burden this library tries to ease, at least a small bit

Have a Policy

The most important thing a maintainer can do ahead of time is to have a clear and understandable deprecation policy.

The policy can be as formal or informal as appropriate, or as may be known ahead of time.

It should clearly communicate what users of a package can expect out of you the maintainer when a deprecation is needed. It may cover any or all of:

	once a deprecation has been done, how long will it be before the deprecation is finished and the object is removed or changed incompatibly?

	where or how will deprecations be communicated?

	how do you the maintainer, or team of maintainers, view backwards compatibility in the context of your package?
Is it important?
Is it unimportant (sometimes it won’t be!)

	in the event a backwards incompatible change is made unintentionally, perhaps due to the introduction of a bug, is fixing the backwards incompatibility itself allowed as a backwards incompatibility in a successive release? Does the answer change if the bug is unnoticed for a long while?

	how will changes to the deprecation policy itself be done?

Your policy will likely fail to predict all of the intricate deprecations that you may need over your package’s long and healthy lifetime.
Judgment calls may still have to be made (empathetically), but a policy sets an initial set of guidelines which can be built upon later.

See also

PEP 387 [https://peps.python.org/pep-0387/]

The PEP covering the backwards compatibility policy for Python itself
as a language

regret’s Deprecation Policy

regret’s own deprecation policy

Twisted Compatibility Policy [https://docs.twisted.org/en/stable/development/compatibility-policy.html]

The Twisted project’s deprecation (compatibility) policy

Document Your Public API

A deprecation policy can clarify to users of a package what to expect as the package evolves and changes APIs or objects over time.

Simply specifying how deprecations will be handled however is not enough.
Even with a clear policy on how deprecations will be handled, a key additional piece of guidance is needed around what objects or APIs are themselves considered “public” and thereby fall under the deprecation policy [2].

As an uncontroversial non-example to illustrate – the specific layout of lines of code within a package’s source code is essentially never part of a package’s public API.
Adding a blank line, or a comment, or even reordering the order in which two functions are defined in a file is essentially universally treated as an acceptable change to make without any indication.
This is the case even though in theory [3] a downstream user of the package may have written code that relies on exact line numbers of an object, or on the ordering of definitions of objects
within the package.

Within the (Python) community, there is a generally agreed upon set of fundamental norms that most maintainers follow or understand, which covers a portion of this public API definition.
But there are a number of areas or subtleties where there is no explicitly discussed standard practice – and in these cases there are maintainers and libraries which conduct themselves in different ways (i.e. which do or do not consider these parts of their API surface to be public or private).

And so – having clear guidelines on what part of a package’s APIs are considered public can be hugely helpful for users who wish to understand when and where they are using a package as intended, and can therefore rely on its policy.

Here is a (non-exhaustive) list of potential API surface that you may need or want to clarify:

	for “normal” Python function parameters which may be passed either positionally or by name, is the order of parameters considered public and will not change?
How about their names?
Will they change?
How about the kind of parameter itself?
Will positional parameters always be passable positionally?
Or may a parameter “convert” into a keyword-only one, or vice versa?

	does the package use a convention to indicate entire modules within it are considered private?
(say, mypackage._foo, following that of other Python objects)

	is the text content of exceptions defined or raised by the package part of its public API, or may they change?

	which methods on objects are considered part of their public API?
Is their __repr__ considered private, even though it otherwise follows public API conventions?
Are any other methods considered similarly exceptional to the “rule”?

	are modules and objects found within the package’s test suite considered public API?

	are imported objects part of a module’s public API?
Can a user of the package assume that if mypackage.foo imports bar, even though bar really lives in some other module, that bar will not be removed from mypackage.foo?
Is the answer different if bar is an object defined somewhere in mypackage vs. in an external package?

	is the layout of your documentation considered public API?
More specifically for say, a package documenting itself via Sphinx [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-index], will the refs [https://www.sphinx-doc.org/en/master/usage/referencing.html#role-ref] defined for headings be kept over time?
Will the overall document structure change?
How about links to specific concrete pages as URLs?

	is being able to raise exceptions defined by your library part of its public API?
Or is only catching them considered public?

	is the number of stack frames your library uses internally to implement a public API itself public API?
After all, a downstream library calling into it may be using warnings.warn [https://docs.python.org/3/library/warnings.html#warnings.warn] and be providing a stacklevel parameter relying on it!

	a class in your library is defined using attrs [https://attrs.org/en/stable/index.html].
Is calling attrs.evolve [https://attrs.org/en/stable/api.html#attrs.evolve] directly on instances of your class considered public API, and your class is thereby permanently coupled to attrs.evolve [https://attrs.org/en/stable/api.html#attrs.evolve]’s public API?
Or is your use of attrs as a library maintainer simply an implementation detail?

	a function in your library calls requests.get [https://requests.readthedocs.io/en/latest/api/#requests.get], a function which has mutable global state – it allows someone to import the library and e.g. define Transport Adapters [https://requests.readthedocs.io/en/latest/user/advanced/#transport-adapters] which, even if done outside your library, affect how it will retrieve the HTTP response.
Is your library free to change its HTTP client to another HTTP client even though this will potentially disrupt users who expect their external change to have an effect on your library’s behavior?

	your package depends on foo>1.2.3. Are these pins part of your public API, and bumping the lower-pinned version of foo a breaking change? Doing so may of course affect users who are using foo==1.2.3 alongside another of their own dependencies.

	today, your package has no binary (non-Python) dependencies. Is that a permanent promise of its installation “API”?

	…

There are many many more.
Think of things that you, a maintainer, rely on from libraries you use, and how many subtleties you wish were clearer.

To be clear, some of the above do have commonly understood answers in the ecosystem – but even beyond resolving the final bits of doubt, there may still be a lot to gain from explicitly confirming each has been considered in the course of changes made to the package.

[2]
Python does not have a particularly formal enforced definition of “public” and “private”, but we use the terms here in their commonly understood meaning within the Python ecosystem: a public object or API is one which is expected to be relied upon by end-users of the package and whose compatibility is “guaranteed”, and a private object is one whose use is conversely not encouraged and not guaranteed for end users, regardless of its accessibility at runtime.

[3]
though hopefully not in practice, even if Hyrum’s Law [https://www.hyrumslaw.com/] might apply.

See also

public API

regret’s own public API definition

The SemVer specification, step 1 [https://semver.org/#semantic-versioning-specification-semver]

which echoes the requirement of defining a clear public API.

jsonschema public API [https://python-jsonschema.readthedocs.io/en/latest/faq/#how-do-jsonschema-version-numbers-work]

another example of a public API definition

Empathize

Having a policy for how you’ll deprecate things, and having a definition of what it is that is subject to deprecation are key steps in setting clear expectations.

The reality is – they’ll never be enough.

End-users of your package will forget or not notice something isn’t part of your public API. Or they’ll knowingly rely on things that aren’t public given “no other” good option for a particular piece of functionality.

Be empathetic!
We are all just trying to get our jobs done, whatever they may be.

Empathy in this case means – if you’ve clearly defined something as private, but you nonetheless see thousands of uses of the private API in downstream code, simply take pause.
At the very least, this often may indicate either a UX issue in finding the appropriate public APIs (which can be used to improve your package’s overall experience) or the lack of an API entirely.

An API marked “experimental” and not-to-be-relied-upon will still be relied upon if it remains unchanged for a number of years in the wild, and breaking it, while justified, will still break downstream users.
Do so knowingly, if you do do so.

You may choose not to remove a private API if it would cause significant breakage due to its evident use.
Doing so indicates empathy!
(Though, in contrast, not doing so, and removing the API, should not be weaponized into a lack of empathy!)

Take situations like these as ways to improve the clarity of your policies and guidance of your documentation overall, and as ways to build healthy relationships, if that is your decision.

Analytics

As a final area of consideration, though a challenging one – nothing beats data.

If you as a package author have access to concrete usage data of any kind, use it to make better decisions about your package’s evolution.

In simple cases this may be as simple as answering “can I deprecate support for a particular Python version?” by investigating how many installations of your package are done on the version in question, for which the PyPA provides a dataset that can help [https://packaging.python.org/en/latest/guides/analyzing-pypi-package-downloads/].
But the same questions can be asked of any API – “how often is this function used? What data would help quantify its use, and can I access it?”.

Any additional data you may have or can easily (and ethically) collect will help drive intelligent and informed decisions.

What You Can Deprecate and How

Most things should be easy to deprecate and everything should be
possible.

This page attempts to demonstrate a variety of practical deprecations
that library authors face, alongside how to perform the deprecation
using regret.

The API Reference also contains a full list for completeness.

Functions & Callables

Deprecating a single function or callable in its entirety is one of the
simplest and most common deprecations to perform.

Consider as an example a greeting function which we wish to deprecate:

def greeting(first_name, last_name):
 return f"Hello {first_name} {last_name}!"

Doing so can be done via the regret.callable decorator by simply
specifying the version in which the function has been deprecated:

@regret.callable(version="v2020-07-08")
def greeting(first_name, last_name):
 return f"Hello {first_name} {last_name}!"

at which point any code which uses the function will receive a suitable
deprecation warning:

print(greeting("Joe", "Smith"))

...: DeprecationWarning: greeting is deprecated.
 print(greeting("Joe", "Smith"))
Hello Joe Smith!

Note

Class objects are themselves simply callables, and as such,
deprecating an entire class can be done in the same manner.

However, if you have an API that primarily encouraged
subclassing of the class to be deprecated, the object returned by
regret.Deprecator.callable is not guaranteed to be a type (i.e.
a class), and therefore may not support being subclassed as the
original object did.

Replacements

It is often the case when deprecating an object that a newer replacement
API subsumes its functionality, and is meant to be used instead.

regret.callable accommodates this common use case by allowing you to
specify which object is the replacement while deprecating:

def better_greeting(first_name, last_name):
 return f"Hello {first_name} {last_name}! You are amazing!"

@regret.callable(version="1.0.0", replacement=better_greeting)
def greeting(first_name, last_name):
 return f"Hello {first_name} {last_name}!"

which will then show the replacement object in warnings emitted:

print(greeting("Joe", "Smith"))

...: DeprecationWarning: greeting is deprecated. Please use better_greeting instead.
 print(greeting("Joe", "Smith"))
Hello Joe Smith!

Parameters

There are various scenarios in which a callable’s signature may require
deprecation.

Removing a Required Parameter

regret can help deprecate a parameter (argument) which previously
was required and which now is to be removed.

Consider again our greeting function, but where we have decided to
replace the separate specification of first and last names with a single
name parameter, [https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/]
and therefore wish to deprecate providing the name in separate parameters:

@regret.parameter(version="v1.2.3", name="first_name")
@regret.parameter(version="v1.2.3", name="last_name")
def greeting(first_name=None, last_name=None, *, name=None):
 if first_name is not None:
 name = first_name
 if last_name is not None:
 name += f" {last_name}"
 return f"Hello {name}!"

After the above, using the function with the previous parameters will
show a deprecation warning:

print(greeting("Joe", "Smith"))

...: DeprecationWarning: The 'first_name' parameter is deprecated.
 print(greeting("Joe", "Smith"))
...: DeprecationWarning: The 'last_name' parameter is deprecated.
 print(greeting("Joe", "Smith"))
Hello Joe Smith!

but via the new parameter, will not:

print(greeting(name="Joe Smith"))

Hello Joe Smith!

Making a New or Previously-Optional Parameter Required

regret can help make a parameter which previously was not
required slowly become required.

Again in our greeting function, perhaps we have decided to allow
specifying how excited to make the greeting, by specifying whether to
end it with a period or exclamation point. We wish to ultimately force
users of the function to specify one or the other, but until then, a
default is being chosen.

@regret.optional_parameter(version="v1.2.3", name="end", default="!")
def greeting(first_name, last_name, end):
 return f"Hello {first_name} {last_name}{end}"

Note

regret can and should handle ensuring that the default is
used when not provided by the caller.

Your wrapped function can assume a value will always be provided.

None [https://docs.python.org/3/library/constants.html#None] can be used as a default if appropriate (and will not be
interpreted with any meaning), as can any other Python object.

After the above, using the function without explicitly passing the end
parameter will show a deprecation warning:

print(greeting("Joe", "Smith"))

...: DeprecationWarning: Calling greeting without providing the 'end' parameter is deprecated. Using '!' as a default.
 print(greeting("Joe", "Smith"))
Hello Joe Smith!

but when properly specifying the new parameter, will not:

print(greeting("Joe", "Smith", end="."))

Hello Joe Smith.

Subclassability

A deprecation library isn’t necessarily the place to opine on the pros
and cons of inheritance [https://www.youtube.com/watch?v=3MNVP9-hglc].

For library authors however who have released public APIs that heavily
depend on or require users to inherit from provided superclasses,
regret provides a mechanism for deprecating the inheritability of
classes.

Consider for example:

class Contact:
 name: str
 phone: str
 address: str

which downstream users of the class extend via e.g.:

class EMailContact(Contact):
 email: str

We can deprecate the downstream use of the contact class in inheritance
hierarchies via:

@regret.inheritance(version="v1.2.3")
class Contact:
 name: str
 phone: str
 address: str

at which point, the act itself of subclassing will produce:

class EMailContact(Contact):
 email: str

...: DeprecationWarning: Subclassing from Contact is deprecated.
 class EMailContact(Contact):

regret’s Deprecation Policy

This document is regret’s own deprecation policy.

It attempts to define, with as much forethought as is known, how
backwards-incompatible changes to the library will be performed.

Public API

regret’s public API broadly follows what is often intuitively or
culturally understood in the Python ecosystem. Here though is a more
precise (though potentially still incomplete) description of things
not considered part of its public API:

	any object whose name follows Python’s “private” convention
(starting with an underscore)

	the entire contents of any module named in the above way (with a
leading underscore)

	the contents of the regret.tests package, i.e. the test suite,
even if objects “appear” to be named publicly

	the exact wording or contents of any exception message emitted

	the exact structure or contents of any object repr [https://docs.python.org/3/library/functions.html#repr]s

	the subclassability (i.e. ability of a class to be a superclass of
another) of any object not explicitly marked as subclassable

	any “transitive” imported objects – meaning, if a module
regret.foo imports an object regret.bar.Baz, the presence of
Baz is not public within foo, only within bar

Versioning

With the above public API in mind, regret attempts to follow
the Semantic Versioning specification [https://semver.org/] as an
(imperfect) communication mechanism. Specifically, major version numbers
will be bumped for each backwards incompatible change, including changes
which have been through the deprecation period discussed below.

Backwards Incompatible Changes

In accordance with the semantic Versioning
scheme mentioned in this document, regret’s public API may change
more drastically until it reaches version 1.0.0 (it’s “official” public
release).

In the event that an API requires a backwards incompatible change, a
deprecation period of six months or two releases will preserve the
original behavior unchanged, whilst emitting a DeprecationWarning [https://docs.python.org/3/library/exceptions.html#DeprecationWarning], and
introducing any replacement APIs.

Python Version Support

In general, regret’s support for particular versions of
Python will end at latest on or around the end of life dates [https://devguide.python.org/developer-workflow/development-cycle/#devcycle] for each respective version, but more
typically once they constitute a meaningful maintenance burden and
constitute a smaller proportion of installations. Exceptions may be made
in some circumstances where versions see continued use, but should not
be relied upon. Support contracts are available for situations which
require them.

Unless otherwise noted, only the latest patch version of each CPython
release is officially supported.

Attempts will always be made to have regret’s supported Python
versions reflected in its built distributions (i.e. via python_requires [https://packaging.python.org/en/latest/guides/writing-pyproject-toml/#python-requires]), such that installation tools do
not install versions unless they are compatible with the running
interpreter.

Further Notes

regret’s continuous integration and test suite [https://github.com/Julian/regret/actions?query=workflow%3ACI] should
be referenced as a representation of execution “environments” it
supports.

This includes both operating system support, as well as broader concerns
– as a hypothetical example, if a new way of installing or running
regret is used which is not already being tested in the automated
suite, its support or continuing function is not guaranteed.

Pull requests are welcome to add additional supported environments,
though some discretion may still be applied if there is likelihood of
ongoing maintenance burden.

API Reference

	regret
	Submodules
	regret.emitted
	Deprecation

	Callable

	Inheritance

	Parameter

	OptionalParameter

	regret.testing
	ExpectedDifferentDeprecations

	Recorder

	regret.typing
	Deprecatable

	Emitter

	name_of

	new_docstring

	Contents
	Deprecator
	Deprecator.callable()

	Deprecator.parameter()

	Deprecator.optional_parameter()

	Deprecator.inheritance()

	callable()

	inheritance()

	optional_parameter()

	parameter()

regret

Submodules

regret.emitted

Objects emitted whilst a deprecated object is being used.

	
class regret.emitted.Deprecation(kind: Deprecatable, name_of: name_of = <function _qualname>, replacement: Any = None, removal_date: date | None = None, addendum: str | None = None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A single emitted deprecation.

	
message() → str [https://docs.python.org/3/library/stdtypes.html#str]

	Express this deprecation as a comprehensible message.

	
class regret.emitted.Callable(object: Any)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A parameter for a particular callable.

	
message(name_of: name_of) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Express this deprecation as a comprehensible message.

	
class regret.emitted.Inheritance(type: type [https://docs.python.org/3/library/functions.html#type][Any])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

The subclassing of a given parent type.

	
message(name_of: name_of) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Express this deprecation as a comprehensible message.

	
class regret.emitted.Parameter(callable: _Callable[..., Any], parameter: inspect.Parameter [https://docs.python.org/3/library/inspect.html#inspect.Parameter])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A parameter for a particular callable which should no longer be used.

	
message(name_of: name_of) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Express this deprecation as a comprehensible message.

	
class regret.emitted.OptionalParameter(callable: _Callable[..., Any], parameter: inspect.Parameter [https://docs.python.org/3/library/inspect.html#inspect.Parameter], default: Any)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A parameter for a particular callable which will become mandatory.

	
message(name_of: name_of) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Express this deprecation as a comprehensible message.

regret.testing

Helpers for testing your regret.

	
exception regret.testing.ExpectedDifferentDeprecations

	Bases: AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]

Different deprecation(s) were seen than the ones which were expected.

	
class regret.testing.Recorder(saw: list [https://docs.python.org/3/library/stdtypes.html#list][Deprecatable] = _Nothing.NOTHING)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Recorders keep track of deprecations as they are emitted.

They provide helper methods for asserting about the deprecations
afterwards.

	
emit(deprecation: Deprecatable, extra_stacklevel: int [https://docs.python.org/3/library/functions.html#int]) → None [https://docs.python.org/3/library/constants.html#None]

	“Emit” a deprecation by simply storing it.

An emitter suitable for passing to regret.Deprecator instances.

	
expect(**kwargs: Any) → contextlib.AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][None [https://docs.python.org/3/library/constants.html#None]]

	Expect a given set of deprecations to be emitted.

	
expect_deprecations(*deprecations: Deprecation) → Iterator[None [https://docs.python.org/3/library/constants.html#None]]

	Expect a given set of deprecations to be emitted.

	
expect_clean() → AbstractContextManager [https://docs.python.org/3/library/contextlib.html#contextlib.AbstractContextManager][None [https://docs.python.org/3/library/constants.html#None]]

	Expect no deprecations to be emitted.

regret.typing

Typing related helpers for regret.

	
class regret.typing.Deprecatable(*args, **kwargs)

	Bases: Protocol [https://docs.python.org/3/library/typing.html#typing.Protocol]

A single kind of deprecatable behavior.

	
message(name_of: Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][[Any [https://docs.python.org/3/library/typing.html#typing.Any]], str [https://docs.python.org/3/library/stdtypes.html#str]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a message summarizing this deprecation.

	
class regret.typing.Emitter(*args, **kwargs)

	Bases: Protocol [https://docs.python.org/3/library/typing.html#typing.Protocol]

A callable which reports when deprecated things are used.

	
regret.typing.name_of

	Return a string name for any object.

alias of Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable][Any [https://docs.python.org/3/library/typing.html#typing.Any], str [https://docs.python.org/3/library/stdtypes.html#str]]

	
class regret.typing.new_docstring(*args, **kwargs)

	Bases: Protocol [https://docs.python.org/3/library/typing.html#typing.Protocol]

A callable which transforms docstrings to include deprecation info.

Contents

You made a thing, but now you wish it’d go away… Deprecations, a love story.

	
class regret.Deprecator(emit: Emitter = <function emit>, name_of: name_of = <function _qualname>, new_docstring: new_docstring = <function doc_with_deprecated_directive>)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Deprecators help manifest regret.

	Parameters:

	
	emit – a callable which will be called with one argument, a
regret.emitted.Deprecation instance, whenever a deprecated
object has been used. If unprovided, by default, a warning
will be shown using the standard library warnings [https://docs.python.org/3/library/warnings.html#module-warnings] module.

	name_of – a callable which given any Python object should return
a suitable name for the object. If unprovided, the
__qualname__ [https://docs.python.org/3/library/stdtypes.html#definition.__qualname__] will be used, and
therefore an object’s (non-fully-)qualified name will appear
in messages.

	new_docstring – a callable which should produce a docstring for newly
deprecated objects. It will be called with three keyword
:param * object:
:param the object that is being deprecated:
:param * name_of: calculating object names
:param the callable described above for use in: calculating object names
:param * version:
:param the version that deprecates the provided object:

and it should return a single string which will become
the new docstring for a deprecated object. If unprovided,
deprecation docstrings will be constructed using syntax
suitable for Sphinx [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-index], via the deprecated [https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-deprecated]
directive.

	
callable(version: str [https://docs.python.org/3/library/stdtypes.html#str], replacement: Any = None, removal_date: datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date] | None [https://docs.python.org/3/library/constants.html#None] = None, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Deprecate a callable as of the given version.

	Parameters:

	
	version – the first version in which the deprecated object was
considered deprecated

	replacement – optionally, an object that is the (direct or indirect)
replacement for the functionality previously performed
by the deprecated callable

	removal_date (datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date]) – optionally, a date when the object is expected to be
removed entirely

	addendum (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional additional message to include at the end of
warnings emitted for this deprecation

	
parameter(version: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Deprecate a parameter that was previously required and will be removed.

	Parameters:

	
	version – the first version in which the deprecated parameter was
considered deprecated

	name – the name of the parameter as specified in the callable’s
signature.

Deprecating a parameter that was previously accepted
only via arbitrary keyword arguments (”kwargs”) is
also supported and should be specified using the name of
the parameter as retrieved from the keyword arguments.

	
optional_parameter(version: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], default: Any)

	Deprecate a parameter that was optional and will become required.

	Parameters:

	
	version – the first version in which the parameter was to warn
when unprovided

	name – the name of the parameter as specified in the callable’s
signature.

Requiring an optional parameter that was previously
accepted only via arbitrary keyword arguments
(”kwargs”) is also supported and should be specified
using the name of the parameter as retrieved from the
keyword arguments.

	default – whilst the parameter remains optional, the value that
should be used when it is unprovided by a caller.

It will be passed through to the wrapped callable,
which can therefore assume the argument will always be
present.

	
inheritance(version: str [https://docs.python.org/3/library/stdtypes.html#str])

	Deprecate allowing a class to be subclassed.

	Parameters:

	version – the first version in which the deprecated object was
considered deprecated

	
regret.callable(version: str [https://docs.python.org/3/library/stdtypes.html#str], replacement: Any = None, removal_date: datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date] | None [https://docs.python.org/3/library/constants.html#None] = None, addendum: str [https://docs.python.org/3/library/stdtypes.html#str] | None [https://docs.python.org/3/library/constants.html#None] = None)

	Deprecate a callable as of the given version.

	Parameters:

	
	version – the first version in which the deprecated object was
considered deprecated

	replacement – optionally, an object that is the (direct or indirect)
replacement for the functionality previously performed
by the deprecated callable

	removal_date (datetime.date [https://docs.python.org/3/library/datetime.html#datetime.date]) – optionally, a date when the object is expected to be
removed entirely

	addendum (str [https://docs.python.org/3/library/stdtypes.html#str]) – an optional additional message to include at the end of
warnings emitted for this deprecation

	
regret.inheritance(version: str [https://docs.python.org/3/library/stdtypes.html#str])

	Deprecate allowing a class to be subclassed.

	Parameters:

	version – the first version in which the deprecated object was
considered deprecated

	
regret.optional_parameter(version: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str], default: Any)

	Deprecate a parameter that was optional and will become required.

	Parameters:

	
	version – the first version in which the parameter was to warn
when unprovided

	name – the name of the parameter as specified in the callable’s
signature.

Requiring an optional parameter that was previously
accepted only via arbitrary keyword arguments
(”kwargs”) is also supported and should be specified
using the name of the parameter as retrieved from the
keyword arguments.

	default – whilst the parameter remains optional, the value that
should be used when it is unprovided by a caller.

It will be passed through to the wrapped callable,
which can therefore assume the argument will always be
present.

	
regret.parameter(version: str [https://docs.python.org/3/library/stdtypes.html#str], name: str [https://docs.python.org/3/library/stdtypes.html#str])

	Deprecate a parameter that was previously required and will be removed.

	Parameters:

	
	version – the first version in which the deprecated parameter was
considered deprecated

	name – the name of the parameter as specified in the callable’s
signature.

Deprecating a parameter that was previously accepted
only via arbitrary keyword arguments (”kwargs”) is
also supported and should be specified using the name of
the parameter as retrieved from the keyword arguments.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 regret	

 	
 	
 regret.emitted	

 	
 	
 regret.testing	

 	
 	
 regret.typing	

Index

 C
 | D
 | E
 | I
 | M
 | N
 | O
 | P
 | R

C

 	
 	Callable (class in regret.emitted)

 	
 	callable() (in module regret)

 	(regret.Deprecator method)

D

 	
 	Deprecatable (class in regret.typing)

 	
 	Deprecation (class in regret.emitted)

 	Deprecator (class in regret)

E

 	
 	emit() (regret.testing.Recorder method)

 	Emitter (class in regret.typing)

 	expect() (regret.testing.Recorder method)

 	
 	expect_clean() (regret.testing.Recorder method)

 	expect_deprecations() (regret.testing.Recorder method)

 	ExpectedDifferentDeprecations

I

 	
 	Inheritance (class in regret.emitted)

 	
 	inheritance() (in module regret)

 	(regret.Deprecator method)

M

 	
 	message() (regret.emitted.Callable method)

 	(regret.emitted.Deprecation method)

 	(regret.emitted.Inheritance method)

 	(regret.emitted.OptionalParameter method)

 	(regret.emitted.Parameter method)

 	(regret.typing.Deprecatable method)

 	
 	
 module

 	regret

 	regret.emitted

 	regret.testing

 	regret.typing

N

 	
 	name_of (in module regret.typing)

 	
 	new_docstring (class in regret.typing)

O

 	
 	optional_parameter() (in module regret)

 	(regret.Deprecator method)

 	
 	OptionalParameter (class in regret.emitted)

P

 	
 	Parameter (class in regret.emitted)

 	parameter() (in module regret)

 	(regret.Deprecator method)

 	
 	
 Python Enhancement Proposals

 	PEP 387

R

 	
 	Recorder (class in regret.testing)

 	
 regret

 	module

 	
 regret.emitted

 	module

 	
 	
 regret.testing

 	module

 	
 regret.typing

 	module

 nav.xhtml

 Table of Contents

 		
 regret

 		
 Before You Deprecate

 		
 Have a Policy

 		
 Document Your Public API

 		
 Empathize

 		
 Analytics

 		
 What You Can Deprecate and How

 		
 Functions & Callables

 		
 Replacements

 		
 Parameters

 		
 Removing a Required Parameter

 		
 Making a New or Previously-Optional Parameter Required

 		
 Subclassability

 		
 regret’s Deprecation Policy

 		
 Public API

 		
 Versioning

 		
 Backwards Incompatible Changes

 		
 Python Version Support

 		
 Further Notes

 		
 API Reference

 		
 regret

 		
 Submodules

 		
 Contents

_static/file.png

_static/minus.png

_static/plus.png

